GRADIENTE

Buon giorno a tutti vorrei sapere, nel caso ad esempio di funzioni in due variabili del tipo f(x,y) se: -la formula del gradiente funziona anche con derivate direzionali aventi direzioni tra loro "ortogonali" ma diverse dalle classiche direzioni x ed y e se è possibile dimostrarlo; -perchè la formula del gradiente non funziona nel caso di derivate direzionali tra loro "non" ortogonali. grazie a tutti


il 27 Agosto 2015, da Michele Ortombina

Michele Ferrari il 27 Agosto 2015 ha risposto:

Ciao Michele! Domanda interessante, alla quale è possibile fornire una risposta facendo un po’ di conti. Il risultato che ho ottenuto - che non riporto qui in formule, ma che se vuoi posso mostrarti - è il seguente: la formula della derivata direzionale funziona in un qualsiasi sistema di coordinate scelto, anche se non è un sistema di coordinate ortogonali. Più precisamente, se scegliamo una qualsiasi coppia di coordinate (a,b)(a, b) per il piano ed esprimiamo ff, il punto PP in corrispondenza del quale stiamo derivando e il vettore vv in termini di queste coordinate, allora vale la seguente uguaglianza: Dvf(a0,b0)=f(a0,b0)vD_v f(a_0, b_0) = \nabla f (a_0, b_0 ) \cdot \vec{v}dove PP ha coordinate (a0,b0)(a_0, b_0). Il motivo per cui questa uguaglianza continua a valere è che la derivata direzionale può essere espressa sempre in termini del differenziale della funzione ff, che a sua volta è esprimibile tramite il gradiente di ff, qualunque sia il sistema di coordinate scelto. Spero che questo sia quello che volevi sapere :) Buona giornata!


grazie 1000 ! - Michele Ortombina 28 Agosto 2015

Prego! :D - Michele Ferrari 28 Agosto 2015