Funzioni

Salve.. esiste una funzione de finita in un intervallo ma non continua nell'intervallo?? non riseco proprio a trovarla


il 23 Agosto 2016, da Marco leon

Giovanni Barazzetta il 24 Agosto 2016 ha risposto:

Ciao Marco! Il tuo dubbio è legittimo, dato che la maggior parte degli esempi di funzioni discontinue sono funzioni definite su un intervallo tranne che in un punto. Ti posso rimandare a questo contenuto https://library.weschool.com/lezione/punti-discontinuita-terza-prima-specie-funzione-analisi-matematica-14935.html per alcuni esempi di funzioni definite su un intervallo ma non continue su tutto l'intervallo. Un classico esempio, un mostro terribile, è la funzionef(x)={1 se xQ0 se xQ f(x) = \begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \notin \mathbb{Q}\end{cases}detta la funzione di Dirichlet, che è definita su tutto R\mathbb{R} ma non è continua nemmeno in un punto. Se non ti piacciono le funzioni definite a tratti, posso proporti f(x)=x2xf(x) = \frac{x^2}{x}, che algebricamente ci dà gli stessi valori di xx, ma che, tecnicamente, non è definita in 00. Se ancora non sei soddisfatto, proviamo con f(x)=xxf(x) = x - \left\lfloor x \right\rfloor, che in pratica prende di un numero reale solo la sua parte decimale, e al posto dei numeri prima della virgola mette 00. Il grafico di questa funzione sembra i denti di una sega: è definita su tutto R\mathbb{R} ma non è continua ne numeri interi, dato che il limite da sinistra vale 11 e il limite da destra vale 00 (e la funzione, calcolata nei numeri interi, vale 00). Spero che sia tutto chiaro: se hai dubbi, chiedi pure! Ovviamente, questi sono solo pochi esempi; di funzioni ce ne sono anche fin troppe per essere contate! Ma sono questi i dubbi che ci fanno progredire. Bravo! Ciao e buona serata.